光電子制御プラズマの形状制御による新規気相反応場の開拓

有明工業高等専門学校 創造工学科 エネルギーコース 鷹林 将

田辺工業株式会社 渡辺 貴之 森田 勇介

Susumu Takabayashi (National Institute of Technology, Ariake College) Takayuki Watanabe Yusuke Morita (Tanabe Engineering Corporation)

1. はじめに

プラズマは、固体、液体、気体に次ぐ第四の物質状態 である。身近な自然現象として、オーロラ、雷、火などが 該当する。しかしながらプラズマは位置を定めるのが困 難であり、その境界も漠然としている。したがって、チャン バー中の決まった場所に再現性良く放電プラズマを生 成させることは、一般に困難である。放電を利用した人 エプラズマ(放電プラズマ)による化学気相成膜ならびに エッチング加工技術は、半導体デバイス作製プロセスに は必要不可欠なものである。その単位は今や nm レベル にまで縮小している。回路の三次元積層高密度集積化 を進展させていくには、プラズマの固定(閉じ込め)と高強 度化(高電流密度化)が求められる。

図 1. 光電子制御プラズマの模式図。

図 2. 光電子制御プラズマの写真: (a) 閉じ込め前(石英カバ ーによる幾何学的規制)、(b) 閉じ込め後。

我々は、図1に示すような光電子制御プラズマという、 真空紫外(VUV)光を用いた放電プラズマ生成法を開発 した[1]。図1にその模式図を示す。VUV光を照射され た基板(図では n⁺-Si(100))から、光電効果により雰囲気 中へ光電子が放出される。この光電子が初期電子として 振る舞うことで、放電が開始される。照射領域とそれ以外 (石英カバーでマスクされた領域)では初期電子の数が 桁違いに異なるため、光電子制御プラズマは前者にの み生成される。

我々はアルゴン(Ar)雰囲気下、電源電圧を 300 V 一 定とした十分光電子制御プラズマ領域において、圧力を 変化させていったところ、図 2 に示すように光電子制御 プラズマが自発的に小さく閉じ込められる現象を発見した[2]。φ16 mmの穴を開けた石英カバーを通して発生した同サイズの光電子制御プラズマは、結果的に φ3 mmまで集光し閉じ込められた。本研究では、この新規現象について、電極構造を変えてさらなる検討を行った。

2. 実験

図3に、新規石英カバーの構造を示す。φ16 mmの穴を5つ並べた多穴構造とした。雰囲気は同じAr 60 sccm とした。印加電圧を同じく300 V 一定として圧力を増加さ せて、光電子制御プラズマの変化を観察した。

(左) 図 3 多穴電極構造を有する石英カバーの構造。穴中の 数字の意味については後述.(右) 図 4 多穴電極構造を用い た際の電流密度-圧力曲線。

3. 結果と考察

図 4 に、電流密度-圧力曲線を示す。各穴の光電子 制御プラズマは図 3 に示した数字の順に消失していき、 最終的に中央部の穴に φ3 mm で閉じ込められた。消失 した圧力は順に、642 Pa、823 Pa、958 Pa、1104 Pa であ った。消失面積を考慮した実質電流密度は、最終的に 526 倍になった。本現象は、半導体微細加工プロセスへ の応用や新規プラズマ気相化学反応場の構築に期待 できる。

参考文献

T. Takami et al., e-J. Surf. Sci. Nanotech. 7, 882 (2009).
R. Tsukazaki et al., J. Vac. Sci. Technol. B 42, 034201 (2024); 鷹林 他, 特開 2025-035450 (2025).

謝辞

本研究は,有明広域産業技術振興会地場産業振興支 援研究によりご支援をいただきました。ここに記し心から 御礼申し上げます。